3.20.46 \(\int \frac {(d+e x)^3}{\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [1946]

Optimal. Leaf size=255 \[ \frac {5 \left (c d^2-a e^2\right )^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 c^3 d^3}+\frac {5 \left (c d^2-a e^2\right ) (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 c^2 d^2}+\frac {(d+e x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c d}+\frac {5 \left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{16 c^{7/2} d^{7/2} \sqrt {e}} \]

[Out]

5/16*(-a*e^2+c*d^2)^3*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e
*x^2)^(1/2))/c^(7/2)/d^(7/2)/e^(1/2)+5/8*(-a*e^2+c*d^2)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^3/d^3+5/12
*(-a*e^2+c*d^2)*(e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2+1/3*(e*x+d)^2*(a*d*e+(a*e^2+c*d^2)*x+c
*d*e*x^2)^(1/2)/c/d

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 255, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {684, 654, 635, 212} \begin {gather*} \frac {5 \left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 c^{7/2} d^{7/2} \sqrt {e}}+\frac {5 \left (c d^2-a e^2\right )^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 c^3 d^3}+\frac {5 (d+e x) \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{12 c^2 d^2}+\frac {(d+e x)^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^3/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(5*(c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*c^3*d^3) + (5*(c*d^2 - a*e^2)*(d + e*x)*S
qrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(12*c^2*d^2) + ((d + e*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e
*x^2])/(3*c*d) + (5*(c*d^2 - a*e^2)^3*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*
e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(16*c^(7/2)*d^(7/2)*Sqrt[e])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 654

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*((a + b*x + c*x^2)^(p +
 1)/(2*c*(p + 1))), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 684

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 1))), x] + Dist[(m + p)*((2*c*d - b*e)/(c*(m + 2*p + 1))), Int[(d + e
*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 -
b*d*e + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {(d+e x)^3}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac {(d+e x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c d}+\frac {\left (5 \left (d^2-\frac {a e^2}{c}\right )\right ) \int \frac {(d+e x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{6 d}\\ &=\frac {5 \left (c d^2-a e^2\right ) (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 c^2 d^2}+\frac {(d+e x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c d}+\frac {\left (5 \left (d^2-\frac {a e^2}{c}\right )^2\right ) \int \frac {d+e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 d^2}\\ &=\frac {5 \left (c d^2-a e^2\right )^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 c^3 d^3}+\frac {5 \left (c d^2-a e^2\right ) (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 c^2 d^2}+\frac {(d+e x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c d}+\frac {\left (5 \left (d^2-\frac {a e^2}{c}\right )^3\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 d^3}\\ &=\frac {5 \left (c d^2-a e^2\right )^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 c^3 d^3}+\frac {5 \left (c d^2-a e^2\right ) (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 c^2 d^2}+\frac {(d+e x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c d}+\frac {\left (5 \left (d^2-\frac {a e^2}{c}\right )^3\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 d^3}\\ &=\frac {5 \left (c d^2-a e^2\right )^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 c^3 d^3}+\frac {5 \left (c d^2-a e^2\right ) (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 c^2 d^2}+\frac {(d+e x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c d}+\frac {5 \left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{16 c^{7/2} d^{7/2} \sqrt {e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.30, size = 192, normalized size = 0.75 \begin {gather*} \frac {\sqrt {c} \sqrt {d} \sqrt {e} (a e+c d x) (d+e x) \left (15 a^2 e^4-10 a c d e^2 (4 d+e x)+c^2 d^2 \left (33 d^2+26 d e x+8 e^2 x^2\right )\right )+15 \left (c d^2-a e^2\right )^3 \sqrt {a e+c d x} \sqrt {d+e x} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )}{24 c^{7/2} d^{7/2} \sqrt {e} \sqrt {(a e+c d x) (d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^3/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(Sqrt[c]*Sqrt[d]*Sqrt[e]*(a*e + c*d*x)*(d + e*x)*(15*a^2*e^4 - 10*a*c*d*e^2*(4*d + e*x) + c^2*d^2*(33*d^2 + 26
*d*e*x + 8*e^2*x^2)) + 15*(c*d^2 - a*e^2)^3*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[e]*Sqrt[a*e + c*d*x]
)/(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])])/(24*c^(7/2)*d^(7/2)*Sqrt[e]*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(887\) vs. \(2(225)=450\).
time = 0.88, size = 888, normalized size = 3.48

method result size
default \(e^{3} \left (\frac {x^{2} \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{3 c d e}-\frac {5 \left (e^{2} a +c \,d^{2}\right ) \left (\frac {x \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{2 c d e}-\frac {3 \left (e^{2} a +c \,d^{2}\right ) \left (\frac {\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{c d e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c d e \sqrt {c d e}}\right )}{4 c d e}-\frac {a \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c \sqrt {c d e}}\right )}{6 c d e}-\frac {2 a \left (\frac {\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{c d e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c d e \sqrt {c d e}}\right )}{3 c}\right )+3 d \,e^{2} \left (\frac {x \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{2 c d e}-\frac {3 \left (e^{2} a +c \,d^{2}\right ) \left (\frac {\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{c d e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c d e \sqrt {c d e}}\right )}{4 c d e}-\frac {a \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c \sqrt {c d e}}\right )+3 d^{2} e \left (\frac {\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{c d e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c d e \sqrt {c d e}}\right )+\frac {d^{3} \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{\sqrt {c d e}}\) \(888\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

e^3*(1/3*x^2/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-5/6*(a*e^2+c*d^2)/c/d/e*(1/2*x/c/d/e*(a*d*e+(a*e^2+
c*d^2)*x+c*d*e*x^2)^(1/2)-3/4*(a*e^2+c*d^2)/c/d/e*(1/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/2*(a*e^2+
c*d^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(
1/2))-1/2*a/c*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^
(1/2))-2/3*a/c*(1/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^
2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))+3*d*e^2*(1/2*x/c/d/e*(a*d*e+
(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-3/4*(a*e^2+c*d^2)/c/d/e*(1/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/2*
(a*e^2+c*d^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c
*d*e)^(1/2))-1/2*a/c*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(
c*d*e)^(1/2))+3*d^2*e*(1/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/c/d/e*ln((1/2*e^2*a+1
/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))+d^3*ln((1/2*e^2*a+1/2*
c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d^2-%e^2*a>0)', see `assume?
` for more d

________________________________________________________________________________________

Fricas [A]
time = 2.83, size = 513, normalized size = 2.01 \begin {gather*} \left [\frac {{\left (15 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {c d} e^{\frac {1}{2}} \log \left (8 \, c^{2} d^{3} x e + c^{2} d^{4} + 8 \, a c d x e^{3} + a^{2} e^{4} + 4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e + c d^{2} + a e^{2}\right )} \sqrt {c d} e^{\frac {1}{2}} + 2 \, {\left (4 \, c^{2} d^{2} x^{2} + 3 \, a c d^{2}\right )} e^{2}\right ) + 4 \, {\left (26 \, c^{3} d^{4} x e^{2} + 33 \, c^{3} d^{5} e - 10 \, a c^{2} d^{2} x e^{4} + 15 \, a^{2} c d e^{5} + 8 \, {\left (c^{3} d^{3} x^{2} - 5 \, a c^{2} d^{3}\right )} e^{3}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}\right )} e^{\left (-1\right )}}{96 \, c^{4} d^{4}}, -\frac {{\left (15 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{3} x e + a c d x e^{3} + {\left (c^{2} d^{2} x^{2} + a c d^{2}\right )} e^{2}\right )}}\right ) - 2 \, {\left (26 \, c^{3} d^{4} x e^{2} + 33 \, c^{3} d^{5} e - 10 \, a c^{2} d^{2} x e^{4} + 15 \, a^{2} c d e^{5} + 8 \, {\left (c^{3} d^{3} x^{2} - 5 \, a c^{2} d^{3}\right )} e^{3}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}\right )} e^{\left (-1\right )}}{48 \, c^{4} d^{4}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/96*(15*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(c*d)*e^(1/2)*log(8*c^2*d^3*x*e + c^2*d^
4 + 8*a*c*d*x*e^3 + a^2*e^4 + 4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e + c*d^2 + a*e^2)*sqrt(c
*d)*e^(1/2) + 2*(4*c^2*d^2*x^2 + 3*a*c*d^2)*e^2) + 4*(26*c^3*d^4*x*e^2 + 33*c^3*d^5*e - 10*a*c^2*d^2*x*e^4 + 1
5*a^2*c*d*e^5 + 8*(c^3*d^3*x^2 - 5*a*c^2*d^3)*e^3)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e))*e^(-1)/(c^4*d^
4), -1/48*(15*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d^2*x + a
*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^3*x*e + a*c*d*x*e^3 + (c^2*d^2*x^2
 + a*c*d^2)*e^2)) - 2*(26*c^3*d^4*x*e^2 + 33*c^3*d^5*e - 10*a*c^2*d^2*x*e^4 + 15*a^2*c*d*e^5 + 8*(c^3*d^3*x^2
- 5*a*c^2*d^3)*e^3)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e))*e^(-1)/(c^4*d^4)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d + e x\right )^{3}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral((d + e*x)**3/sqrt((d + e*x)*(a*e + c*d*x)), x)

________________________________________________________________________________________

Giac [A]
time = 0.83, size = 232, normalized size = 0.91 \begin {gather*} \frac {1}{24} \, \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e} {\left (2 \, x {\left (\frac {4 \, x e^{2}}{c d} + \frac {{\left (13 \, c^{2} d^{3} e^{3} - 5 \, a c d e^{5}\right )} e^{\left (-2\right )}}{c^{3} d^{3}}\right )} + \frac {{\left (33 \, c^{2} d^{4} e^{2} - 40 \, a c d^{2} e^{4} + 15 \, a^{2} e^{6}\right )} e^{\left (-2\right )}}{c^{3} d^{3}}\right )} - \frac {5 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {c d} e^{\left (-\frac {1}{2}\right )} \log \left ({\left | -\sqrt {c d} c d^{2} e^{\frac {1}{2}} - 2 \, {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} c d e - \sqrt {c d} a e^{\frac {5}{2}} \right |}\right )}{16 \, c^{4} d^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

1/24*sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e)*(2*x*(4*x*e^2/(c*d) + (13*c^2*d^3*e^3 - 5*a*c*d*e^5)*e^(-2)/(
c^3*d^3)) + (33*c^2*d^4*e^2 - 40*a*c*d^2*e^4 + 15*a^2*e^6)*e^(-2)/(c^3*d^3)) - 5/16*(c^3*d^6 - 3*a*c^2*d^4*e^2
 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(c*d)*e^(-1/2)*log(abs(-sqrt(c*d)*c*d^2*e^(1/2) - 2*(sqrt(c*d)*x*e^(1/2) - s
qrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e))*c*d*e - sqrt(c*d)*a*e^(5/2)))/(c^4*d^4)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^3}{\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^3/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2),x)

[Out]

int((d + e*x)^3/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2), x)

________________________________________________________________________________________